177 research outputs found

    Generalization error bounds for iterative learning algorithms with bounded updates

    Full text link
    This paper explores the generalization characteristics of iterative learning algorithms with bounded updates for non-convex loss functions, employing information-theoretic techniques. Our key contribution is a novel bound for the generalization error of these algorithms with bounded updates, extending beyond the scope of previous works that only focused on Stochastic Gradient Descent (SGD). Our approach introduces two main novelties: 1) we reformulate the mutual information as the uncertainty of updates, providing a new perspective, and 2) instead of using the chaining rule of mutual information, we employ a variance decomposition technique to decompose information across iterations, allowing for a simpler surrogate process. We analyze our generalization bound under various settings and demonstrate improved bounds when the model dimension increases at the same rate as the number of training data samples. To bridge the gap between theory and practice, we also examine the previously observed scaling behavior in large language models. Ultimately, our work takes a further step for developing practical generalization theories

    Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

    Full text link
    In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the second one deals with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved efficiently using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.Comment: 23 page

    An Extended Result on the Optimal Estimation under Minimum Error Entropy Criterion

    Full text link
    The minimum error entropy (MEE) criterion has been successfully used in fields such as parameter estimation, system identification and the supervised machine learning. There is in general no explicit expression for the optimal MEE estimate unless some constraints on the conditional distribution are imposed. A recent paper has proved that if the conditional density is conditionally symmetric and unimodal (CSUM), then the optimal MEE estimate (with Shannon entropy) equals the conditional median. In this study, we extend this result to the generalized MEE estimation where the optimality criterion is the Renyi entropy or equivalently, the \alpha-order information potential (IP).Comment: 15 pages, no figures, submitted to Entrop
    corecore